作者znmkhxrw (QQ)
看板trans_math
标题Re: 审歛
时间Sat Oct 15 23:59:59 2011
※ 引述《min102257 (昵称)》之铭言:
: ∞ 1
: Σ --------------- conv.?
: N=3 ln(lnN)
: (lnN)
: 有点复杂不知怎麽算
: 化成积分好像也积不出来
: 那应该是用 比较检验法??
: 麻烦高手了~ 感谢
divergent.
since ln(ln(n)) is increasing , ln(n) is increasing
so
ln(ln(n))
ln(n) is increasing to inf
1
so ─────── decreasing to 0
ln(ln(n))
ln(n)
Cauchy condensation principle can be applied
2^n
consider ───────── (n都用2^n带入 然後整个级数乘2^n)
ln(nln(2))
nln(2)
2^n
=> ─────────────
(ln(n) + ln(ln(2)))
nln(2)
2^n
=> ────────────────────────── denoted by b_n
ln(n) ln(ln(2)) ln(n) ln(ln(2))
n * n * ln(2) * ln(2)
~~~~~~~~~~
↓
ln(ln(2))
n
by root test, (b_n)^(1/n)
2
= ────────────────────────────────
(ln(n))/n (ln(ln(2)))/n (ln(ln(2)))/n (ln(ln(2)))/n
n * n * n * ln(2)
~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
↓ ↓ ↓ ↓
as n→inf, 1 1 1 1
so summation of b_n diverges
imply the original question is divergent
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 1.169.137.197
1F:推 min102257:也太难了ㄅ140.120.226.101 10/16 08:16
3F:→ min102257:Cauchy condensation test140.120.226.101 10/16 08:50
4F:→ box711:王博的书里有理论说明与解答 114.34.36.226 10/25 22:28