作者beatitude (羔羊之歌 赞)
站内trans_math
标题Re: [微分] 又遇到问题了!!
时间Fri Feb 18 23:00:37 2005
※ 引述《terry1122 (我会一直守候着你)》之铭言:
: l i m {x+[x+(x^1/2)]^1/2}^1/2
: x->无限大 --------------------------
: x^1/2+100
let x^1/2 = y
l i m {x+[x+(x^1/2)]^1/2}^1/2
x->无限大 --------------------------
x^1/2+100
{y^2 + [ y^2 + y ]^1/2}^1/2
= l i m ------------------------------
y->无限大 y + 100
接下来就靠罗必达了
: l i m n
: n->无限大 --------------------------- (a>0)
: (1+a)^n
BY 罗必达
l i m n
n->无限大 --------------------------- (a>0)
(1+a)^n
1
= l i m ------------------- = 0
n->无限大 (1+a)^n * ln(1+a)
: l i m
: n->无限大 { [1/(n^2+1)^1/2]+[1/(n^2+2)^1/2]+.....
: +[1/(n^2+2n-1)^1/2]+[1/(n^2+2n)^1/2] }
2n 1
令 lim Σ --------------- = Q
n->∞ k=1 [n^2 + k]^1/2
2n 2n
lim -------------- = < Q = < lim ---------------
n->∞ [n^2 + 2n]^1/2 n->∞ [n^2 + 1]^1/2
= 2 = 2
所以 Q = 2
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 218.168.240.142
1F:推 terry1122:用罗必达下手= = 59.104.225.208 02/19
2F:→ terry1122:我还是不会处理分子耶... 59.104.225.208 02/19