作者littleshan (我要加入剑道社!)
看板logic
标题Re: [转录] 微软中国研究院最新面试题
时间Mon Oct 17 15:05:15 2005
※ 引述《klimt (真想轻松一辈子)》之铭言:
: ※ 引述《littleshan (我要加入剑道社!)》之铭言:
: : ~P -> ~Q
: : 同义为:Q -> P (若小强知道 则小明知道)
: : 小强在什麽情况下会知道呢? 那就是 N=2 或 N=7的时候
: : 这种情况下不知道 M 也可以得到 12/2 或 6/7
: : 因此 M 是 12 或 6 其中之一
: M会是12跟6是因为你假设小强一开始就知道 所以M才会是12跟6
: 但是问题是第二句话小强说:"我本来不知道,但是现在我知道了"
: M不可能代12跟6
请先同意我的第一个命题 (这应该没什麽问题)
「若小强知道,则小明知道」
接下来是第二个 (应该也没什麽问题)
「若N=2 or N=7,则小明知道」 (命题A)
接下来是重点
「M不可能为3或9」
证明是反证法
假设M为3或9,则 3/2, 3/7, 9/2, 9/7 四组生日中至少有一组存在
否则命题A无法成立。但这四组生日全部不存在,意即
「若N=2 or N=7,则小明不可能知道,因为生日不存在」
故假设错误。
我从头到尾可没假设小强一开始就知道
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.62.3.35
1F:嘘 GXX:第一个命题就有问题=.= 03/23 20:02
2F:推 mikechan:第一个命题没问题呀 09/21 23:58
3F:→ mikechan:有问题的是命题A 09/22 00:01