作者Hall (最好的时光)
看板comm_and_RF
标题Re: [问题] 如何证明max func.是Convex func.
时间Sat Nov 11 11:40:41 2006
※ 引述《lovewa (On my way)》之铭言:
: 最近学到Jensen's Inequality...
: 刚好看到一个题目,其中必须先证明MAX(a,b)是一个Convex Function
: 但是苦思不得其解,有知道的人可以出来提示一下吗?
Assume a,b both are real numbers
Let :
y=t*a+(1-t)*b where 1>= t >= 0
case 1. a>=b
MAX(a,b)=1*a+(1-1)*b
MAX(a,b)-y=(1-t)*a-(1-t)*b=(1-t)*(a-b)>=0
case 2. a<b
MAX(a,b)=(1-1)*a+1*b
MAX(a,b)-y=-t*a+t*b=t*(b-a)>=0
from above discussion, MAX(a,b) is a convex function of x,
where x is contained in the close set [a,b] or [b,a].
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
sorry...it's a wrong conclusion...
应该改成
Because a,b are both in R(Real nubers)
from above discussion, MAX(a,b) is a convex function over R
这样似乎比较正确...
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.96.82.225
※ 编辑: Hall 来自: 140.96.82.225 (11/11 11:41)
※ 编辑: Hall 来自: 140.96.82.225 (11/11 11:42)
1F:推 lovewa:谢谢唷~原来2D的也是这样证明~:) 140.115.152.45 11/11 11:55
※ 编辑: Hall 来自: 61.216.180.139 (11/11 23:02)
2F:推 Hall:n-D的话应该指的是 a,b 都是 n-D vector 61.216.180.139 11/11 23:05