作者TameFoxx (foxx)
看板b982040XX
标题[转录][试题] 97暑 周青松 微积分甲上 期中考
时间Wed Nov 11 18:23:58 2009
※ [本文转录自 NTU-Exam 看板]
作者: nanmadol (大尾巴) 看板: NTU-Exam
标题: [试题] 97暑 周青松 微积分甲上 期中考
时间: Thu Jul 16 05:17:48 2009
课程名称︰微积分甲上
课程性质︰暑修
课程教师︰周青松
开课学院:理学院
开课系所︰
考试日期(年月日)︰2009/7/15
考试时限(分钟):
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
1. Show that:
A). sin x
lim ──── = 1
x→0 x
B). 1-cos x
lim ───── = 0
x→0 x
2. Find the indicated derivatives
A). d d^2
──[t^2 ───(tcos 3t)]
dt dt^2
B). d d
──[t ──cos t^2]
dt dt
3.
A). Find the intervals on which f increases and the intervals on which f
decreases, where
{ x^3, x<1
f(x)= 1
{──x+2, x≧1
2
B). Set f(x) = sec^2 x and g(x) = tan^2 x on the interval (-π/2,π/2).
Show that f'(x) = g'(x) for all x ∈ (-π/2,π/2).
4.
A). Determine A and B so that the curve
y = Ax^(1/2)+Bx^(-1/2)
has a point of inflection at (1,4).
B). Determine A and B so that the curve
y = Acos 2x + Bsin 3x
has a point of inflection at (π/6,5).
1 7
5. Sketch the graph of f(x) = ──x^4-2x^2+── on the interval (-∞,3].
4 4
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.199.90
※ 编辑: nanmadol 来自: 140.112.199.90 (07/16 05:21)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.36.41.179