作者Jordan23 (原来是不该....)
看板Statistics
标题Re: [问题] 一题证明拜托大家
时间Sun Jan 22 01:42:52 2006
※ 引述《JimCroce (我要下五子棋 N )》之铭言:
: ※ 引述《H0NEYCAT ()》之铭言:
: : Let Sn have a Chi-square distribution. Show that the
: : limiting distribution of √Sn - √n is N(0,1/2).
: : This is known as Fisher's approximation.
: : 拜托了
: E(Sn)=n Var(Sn)=2n
: by CLT 可知
: d
: (Sn - n) ---> N(0,2n)
收敛到一个还包含有n的东西, 有点怪.
by CTL (Not trivival)
n^(-0.5)(Sn-n)--->N(0,2) (in distribution)
n^(0.5)(Sn/n-1)--->N(0,2) (in distribution)
令g(x)=√x g在1连续
by delta method
n^(0.5)(g(Sn/n)-g(1))--->N(0,(g'(1))^2*2) (in distribution)
所以√Sn - √n--->N(0,1/2) (in distribution)
: by Cramer-δ theorem 令g(x)= √x , 且 在 x=n 连续
: d
: (√Sn - √n) --->g'(n) N(0,2n)≡N(0,1/2)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.224.79.249
1F:推 jackdan:强者~ 01/22 16:57
2F:推 JimCroce:THX!!!写太快了 01/22 17:19
3F:→ JimCroce:没注意到....= = 01/22 17:20
4F:推 JimCroce:答案应该是N(0,1/2) ^^ 01/22 17:22
推 Jordan23:THX!!!写太快了 没注意到....= =
※ 编辑: Jordan23 来自: 61.224.79.249 (01/22 21:07)