作者janep (XD)
看板Statistics
标题Re: [问题] 实验设计
时间Mon Dec 19 21:37:42 2005
※ 引述《[email protected] (老怪物)》之铭言:
: ※ 引述《[email protected] (XD)》之铭言:
: > 当我们如果知道结果为显着的..
: > 我要用duncans multiple range test
: > 来看哪两组是有差别的..假设每一个treatment的n都相等
: > 不过一本课本是写
: > S=√MSE/n
: > 然後在用S*查表值来决定..
: ^^^^^^^^
: > 但另一本是
: > S=√MSE/(ni+nj)
: > 目前遇到的都是ni=nj=n
: > 所以第二种方法的S会比较大..
: ^^^^^^^^^^^^^^^^^^^^^
: > 这样的话有可能会第一种方法判定μ1≠μ2
: > 但第二种方法比较难reject 所以结果为μ1=μ2
: > 哪一种才是对的呢.???
: 你有没有看清楚: 两本书所用的数值表一样吗?
第一本:
LSD的信赖区间:
1 1 1 1
Xi.bar-Xj.bar -t(n-k)√MSE(--- + ---) ,Xi.bar-Xj.bar +t(n-k)√MSE(--- + ---)
ni nj ni nj
duncan:
1 1 1 1
Xi.bar-Xj.bar -r(a,b)√MSE(--- + ---) ,Xi.bar-Xj.bar +r(a,b)√MSE(--- + ---)
ni nj ni nj
Tukey
1 1 1 1
Xi.bar-Xj.bar -Q(k,n-k)√MSE(--- + ---),Xi.bar-Xj.bar +Q(k,n-k)√MSE(--- + ---)
ni nj ni nj
第二本:
LSD:
一样
duncan:
1 1
Xi.bar-Xj.bar -r(a,b)√MSE(---) ,Xi.bar-Xj.bar +r(a,b)√MSE(---)
n n
如果每一个treatment 的n不同则
a
nh=----------- 所以当每一组n都一样时 nh=n 所以还是一样
a
Σ (1/ni)
i=1
Tukey
1 1
Xi.bar-Xj.bar -Q(k,n-k)√MSE(---) ,Xi.bar-Xj.bar +Q(k,n-k)√MSE(---)
n n
当要比较的treatment的n不同时信赖区间变成
1 1 1 1
Xi.bar-Xj.bar-Q(k,n-k)√MSE(--- + ---),Xi.bar-Xj.bar +Q(k,n-k)√MSE(--- + ---)
-------- ni nj ------- ni nj
√2 √2
所以当ni=nj时..也会跟上面一样..没问题..
所以很明显的..两本书讲的不一样..
而且Tukey跟Duncan的查表..在α一样时..值也会一样(因为表只有一种)
查其他的书..作者又都差不多...也没介绍的很清楚..
恩..有人有学过这些Comparing Pairs吗??大家学的跟哪一本一样啊..
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 61.57.78.129