作者janep (XD)
看板Statistics
标题Re: [问题] 一题MLE的问题 ~
时间Wed Oct 19 12:24:01 2005
※ 引述《taldy ()》之铭言:
: A random variable X is said to have a lognormal distribution,if the logarithm
: of X has a normal distribution.Let X1,X2,...,Xn be iid lognormal random
: variables ,thus Yi=lnXi ~N(μ,σ^2).Use invariance principle of maximum
: likelihood estimation to find the MLE of E(Xi) and Var(Xi).
: 有谁知道怎麽解的,回答一下..thx
Y~N(μ,σ^2)
so
1 1
f(y)= ---------- exp [- -------(y-μy)^2]
√2πσy 2σy^2
Y=lnX
1 1 1
f(x)= ---------- exp [- ------(lnx-μy)^2] ---
√2πσy 2σy^2 x
let μy=lnx0 σy=ω
1 1 x
f(x)= ---------- exp {- ------[ln(---)]^2}
√2πω x 2ω^2 x0
应该可以从这方面去推出来吧..
因为我也是最近才看到这个..所以不太懂..希望对你有帮助..XD
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 218.169.85.136
1F:推 mangogogo:invariance principle of MLE 这才是重点 10/19 17:02