作者Thitta (胖胖 )
看板NTUIB99
标题[转录][试题] 93下 张秀瑜 微乙 期末考题
时间Mon Jun 18 23:59:00 2007
应JJ要求
愿大家考试顺利
如果万一万一万一考差了
没关系~张秋骏会是你永远的好朋友
祝万福万安~~~
※ [本文转录自 NTU-Exam 看板]
作者: cawaiik (5/1台大热舞成发在旧体) 看板: NTU-Exam
标题: [试题] 93下 张秀瑜 微乙 期末考题
时间: Fri Aug 19 17:03:34 2005
课程名称︰微积分乙
课程性质︰
课程教师︰张秀瑜
开课系所︰管院
考试时间︰93下
试题 :
1. Find dz/dz if z is defined implicitly as a function of x
and y by the equation sin(xyz) = x + 2y + 3z .
2. Show that f(x,y) = x√y is differentiable at (1,4) and find
its linearization there. Then use it to approximate (1.1,3.9) .
3. If z = f(x,y) has continuous second-order partial derivatives
and x = r^2 + s^2 and y = 2rs , find (a) dz/dr and (b) d^2z/drds .
4. Consider the curve xsin(x+y) + 2x^2 = 0 in xy-plane. Find a
vector which is orthogonal to the curve at (1/2, 3π-1 / 2)
5. (a) Find the volume of the solid under the plane x + 2y - z = 0
and above the region bounded by y = x and y = x^4
1 1 ________
(b) Evaluate ∫ ∫ √x^3 + 1 dxdy by reversing the order of
0 √y
integration.
6. Evaluate ∫∫ xdA , where D is the region in the first quadrant
D
that lies between the circles x^2 + y^2 =4 and x^2 + y^2 = 2x .
7. Evaluate ∫∫∫ (x^2 + y^2 + z^2)dV , where E: 0 ≦ z ,
E
x^2 + y^2 + z^2 ≦ 1 .
8. Evaluate ∫∫ sin(9x^2 + 4y^2)dA , where R is the region in the
R
first quadrant bounded by the ellipse 9x^2 + 4y^2 = 1 .
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.237.185
1F:推 naruto750812:还有经济系!! 10/16 22:57
※ Thitta:转录至看板 NTUIB99 01/14 15:16
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.240.101
※ 编辑: Thitta 来自: 140.112.240.101 (06/19 00:00)
※ 编辑: Thitta 来自: 140.112.240.101 (06/19 00:00)
2F:推 kingofAfr:谢啦 06/19 00:00
3F:推 littlecutie:甘温 06/19 00:36