作者sky2857 (楷中)
看板NTUBIME103HW
标题[转录][试题] 97暑 周青松 微积分甲下 第一次期中考
时间Sat Mar 26 22:15:06 2011
※ [本文转录自 NTU-Exam 看板 #1AYsmqbp ]
作者: iwantowaylaw (我要成为太鼓达人) 看板: NTU-Exam
标题: [试题]
时间: Wed Aug 19 11:06:27 2009
课程名称︰暑修微积分甲下
课程性质︰
课程教师︰周青松
开课学院:
开课系所︰
考试日期(年月日)︰2009/8/19
考试时限(分钟):8:10~10:00
是否需发放奖励金:要
(如未明确表示,则不予发放)
试题 :
A.
(a)
x^100n ∞
Determine whether the sequence { ——— } converges and if so ,
n! n=1
find the limit .
(b)
∞ x^k
Show that e^x= Σ —— for all real x .
k=0 k!
B.
(a)
x
Given that the function f is continuous , find the limit lim (1/x) ∫ f(t)dt .
x→0 0
(b)
Show that lim x^x = 1
x→0+
C.
A non-negative function f defined on (-∞,∞) is call a probability density
∞
function if ∫ f(x)dx = 1 . And the mean of a probability density function
-∞
∞
f is defined as the number μ = ∫ xf(x)dx .
-∞
(a)
Show that the function f(x) = ke^(-kx) , if x≧0
0 , if x<0
is a probability density function where k>0 is a given constant .
This function is called the exponential density function .
(b)
Find the mean of the exponential density function.
D.
(a)
∞
Show that ∫ x^(-p) dx converges if p>1 and diverges if 0<p≦1 .
-∞
(b)
∞
Show that Σ k^(-p) converges if and only if p>1 .
k=1
E.
(a)
Deduce the differentiation formulas
dsinhx/dx = coshx (双曲正弦函数对x微分 = 双曲余弦函数)
from the expansion of sinhx and coshx in powers of x .
(b)
x
Fine a power series representation for the function ∫ (sinht/t) dt .
0
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.24.196
1F:推 Hseuler :科科 机率出来了 08/19 12:58
※ 编辑: iwantowaylaw 来自: 140.112.4.109 (09/15 18:30)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 111.82.63.124