作者sophiamag19 (秋人)
看板NTUBIME102HW
标题[转录][试题] 97暑 周青松 微积分甲上 期末考
时间Fri Jan 8 22:49:14 2010
※ [本文转录自 NTU-Exam 看板]
作者: ee0longsun (我是擂颗迷) 看板: NTU-Exam
标题: [试题] 97暑 周青松 微积分甲上 期末考
时间: Wed Jul 29 11:32:46 2009
课程名称︰微积分甲上
课程性质︰暑修
课程教师︰周青松
开课学院︰理学院
开课系所︰
考试日期(年月日)︰2009/7/29
考试时限(分钟):110 min
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
1. Find f(x) from the information given.
(a) f'(x)=ax^2 + bx + c , and f(0)=0 ,where a,b,c are three constants.
(b) f''(x)=cos x , f'(0)=1 ,and f(0)=2.
2. (a) Sketch the region Ω bounded by y=x^2 and y=2-x. Use the washer-method
to find the volume of the solid generated by revolving this region about
the x-axis.
(b) Sketch the region Ω bounded by x=y^2 and x=2-y. Use the shell-method
to find the volume of the solid generated by revolving this region about
the y-axis.
3. (a) Differentiate f(x)=㏑(cos e^2x ) and calculate the integral
sin(e^-2x)
∫──────dx
e^2x
(b) Evaluate
____
√2㏑3
∫ xe^(-x^2 / 2) dx
0
4. (a) Show that for a > 0 ,we have
dx x
∫────────── = arcsin── + C
(a^2 - x^2)^(1/2) a
(b) Show that for a≠0 , we have
dx 1 x
∫──────── = ── arctan── + C
a^2 + x^2 a a
5. (a) Show that
d -1 1
──(sinh x) =─────────
dx (1 + x^2)^(1/2)
where x is a real number.
(b) Verifying the formula
1 -1
∫─────────dx = sinh (x/a) + C
(x^2 + a^2)^(1/2)
where a is a positive constant.
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.7.59
※ sophiamag19:转录至看板 NTUBIME102HW 01/08 22:44
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.42.77.54