作者assignment (凝愿)
看板NTUBA00study
标题[转录][试题] 周青松 微积分甲上(2005秋 期末考)
时间Fri Nov 23 23:07:54 2007
※ [本文转录自 NTU-Exam 看板]
作者: Nzing (黑色神话) 看板: NTU-Exam
标题: [试题] 周青松 微积分甲上(2005秋 期末考)
时间: Mon Jan 9 16:05:06 2006
课程名称︰微积分甲
课程性质︰共同必修
课程教师︰周青松
开课系所︰数学系
考试时间︰2005.01.09 13:20~15:00
试题 :
Ⅰ.A) Find f from th information given:
f''(x) = sin x, f'(0) = -2, f(0) = 1
B) Calculate the derivative:
d 2x
─ (∫ t√(1+t^2) dt)
dx tanx
Ⅱ.A) The base of a solid is the region between the parabolas
x = y^2 and x = 3 - 2 y^2
Find the volume of the solid given that the caves section perpendicular to
the x-axis are squares.
B) Find the volume of the solid generated by revoluting the region between
y = x^2 and y = 2x about the y-axis.
Ⅲ.A) a. Find the derivative:
d cos x
─ [(sin x) ]
dx
b. Evaluate the integral:
1 1+x^2
∫ x 10 dx
0
kx
B) Let f'(x) = kf(x) for all x in some interval. Prove that f(x) = Ce ,
where C is an arbitrary constant.
Ⅳ.A) Show that for a>0
dx -1 x+b
∫────────── = sin (──) + C
√[a^2 - (x+b)^2] a
B) Determine A, B and c so that y = A cosh cx + B sinh cx satisfies the
conditions y''- 9y = 0, y(0) = 2, y'(0) = 1. Take c>0
Ⅴ.A) Show that
d -1 1
─ (cosh x) = ────── , x>1
dx √(x^2 - 1)
B) Prove that 1 -1 x
∫ ─────── dx = cosh (──) + C , a>0
√(x^2 - a^2) a
(每大题均20分)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.240.198
※ LrgS:转录至看板 NTUGEO95-HW 01/10 20:13
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 218.166.104.155