作者maxcsh (ㄚ翰)
看板NTU-K6
标题Re: [闲聊]
时间Tue Oct 19 00:29:21 2010
※ 引述《tobe6104 (拖拖拖拖比)》之铭言:
: 空间中给A(0,0,0),B(1,1,√2),C(2,0,0)三点座标
: 如ABCD为一正四面体,求D点座标。
难得没事来骗骗P币好了,
设D(x,y,z),由四边等距:
x^2 + y^2 + z^2 = (x-1)^2 + (y-1)^2 + (z-√2)^2 = (x-2)^2 + y^2 + z^2 = 4
=> 2x-1 + 2y-1 + 2√2z-2 = 0
4x-4 = 0
x^2 + y^2 + z^2 = 4
=> x = 1
=> 2y + 2√2z = 2
y^2 + z^2 = 3
=> z = (y - 1)/√2 代入得 3y^2 - 2y - 5 = 0
=> y = -1 or 5/3 => z = -√2 or √2/3
=> D( 1 , -1 , -√2 ) or D( 1 , 5/3 , √2/3 )
以上没拿笔纯靠烂烂的心算,算错概不负责=.=
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.249.113
1F:推 tobe6104:好直接喔 那求重心在用abc平面法向量延伸四面体的高这方 10/19 00:46
2F:→ tobe6104:法烂不烂= = 10/19 00:47
3F:推 Poplarysl:其实算错了 = = 10/19 00:48
4F:→ maxcsh:楼上帮忙补完,我懒得检查 10/19 00:49
5F:→ Poplarysl:你用重心的话 也可以用重心跟法向量去弄出参数式 10/19 00:57
6F:→ Poplarysl:一样可以算啊XDD 10/19 00:57
7F:→ Poplarysl:我都已经忘记正四面体的高是边常的几倍了== 10/19 00:58
8F:→ maxcsh:√6/3 10/19 01:02
9F:→ maxcsh:吧 10/19 01:02
10F:推 lmc66:最直接的方法才是好方法 永远都不会忘 10/19 02:11