NTU-Exam 板


LINE

课程名称︰数位系统与实验 课程性质︰资工系大二必带 课程教师︰欧阳明 开课学院:电机资讯学院 开课系所︰资讯工程学系 考试日期(年月日)︰2018/06/28 试题 : 1. (10%) Design a circuit which functions as Larry's code below. module LarryModule(input clk, output reg [3:0] out); always@(posedge clk) begin if(out == 4'd9) out = 0; else out <= out+1; end endmodule Design your circuit using AND gates, OR gates, NOT gates, and four JK flip- flops. 2. (20%) Design a sequential circuit which investigates an input sequence X and will produce an output of Z = 1 for any input sequence ending in 1101 or 011. Example: X 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 Z 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 Notice that the circuit does not reset to the start state when an output of Z = 1 occurs. However, your circuit should have a start state and should be provided with a method for manually resetting the flip-flops to the start state. (a) Create a minimized "state diagram" for this 4-bit sequence detector. A minimum solution requires six states. (10%) (b) Design your circuit using three D flip-flops. (Assign 000 to the start state.) (10%) 3. (20%) Consider the circuit below. https://i.imgur.com/umb0qps.png \begin{circuitikz} \tikzset{ flipflop JK1/.style={flipflop, flipflop def={ t1=$J_1$, t2=Ck, c2=1, n2=1, t3=$K_1$, t4=$Q_1'$, t6=$Q_1$ }}, flipflop JK2/.style={flipflop, flipflop def={ t1=$J_2$, t2=Ck, c2=1, n2=1, t3=$K_2$, t4=$Q_2'$, t6=$Q_2$ }} } \ctikzset{logic ports=ieee} \draw (9, 0) node[flipflop JK1](jk1){}; \draw (jk1.bpin 5) node[left]{FF}; \draw (9, -3) node[flipflop JK2](jk2){}; \draw (jk2.bpin 5) node[left]{FF}; \draw (0, 0) node[anchor=east]{Clk} to (jk1.pin 2); \draw (7.5, 0) node[circ]{} |- (jk2.pin 2); \draw (4, 3) node[nand port](nand1){}; \draw let \p1=(nand1.in 1) in (0, \y1) node[anchor=east]{$X$} to (\p1); \draw let \p2=(nand1.in 2) in (0, \y2) node[anchor=east]{$Q_2'$} to (\p2); \draw (4, 1) node[nand port](nand2){}; \draw let \p1=(nand2.in 1) in (0, \y1) node[anchor=east]{$Q_2$} to (\p1); \draw let \p2=(nand2.in 2) in (1.5, \y2) node[not port](not1){}; \draw let \p1=(nand1.in 1) in (.5, \y1) node[circ]{} |- (not1.in); \draw (not1.out) to (nand2.in 2); \draw let \p1=(jk2.pin 1) in (4, \y1) node[nor port](nor1){}; \draw let \p2=(nand2.in 2) in (2.75, \y2) node[circ]{} |- (nor1.in 1); \draw let \p2=(nor1.in 2) in (0, \y2) node[anchor=east]{$Q_1$} to (\p2); \draw (nor1.out) to (jk2.pin 1); \draw (6.5, 2) node[nand port](nand3){}; \draw (nand1.out) |- (nand3.in 1); \draw (nand2.out) |- (nand3.in 2); \draw (nand3.out) |- (jk1.pin 1); \draw let \p3=(jk1.pin 3) in (6.5, \y3) node[not port](not2){}; \draw let \p2=(nand2.out) in (\p2) node[circ]{} |- (not2.in); \draw (not2.out) to (jk1.pin 3); \draw let \p1=(jk2.pin 1) in (7, \y1) node[circ]{} |- (jk2.pin 3); \draw (12, -1.5) node[nor port](nor2){}; \draw (jk1.pin 4) -| (nor2.in 1); \draw (jk2.pin 4) -| (nor2.in 2); \draw (nor2.out) node[anchor=west]{$Z$}; \end{circuitikz} (a) Construct a state table and graph for the circuit. Assume 00 is the ini- tial state. (7%) (b) Is the circuit a Mealy or Moore circuit? (3%) (c) Draw a timing diagram for the input sequence X = 01100. (6%) (d) What is the output sequence for the input sequence? (4%) 4. (10%) For the following state table, please determine a minimal state table. Next State Output ────── ────── Present State x = 0 x = 1 x = 0 x = 1 ──────────────────────── a f b 0 0 b d c 0 0 c f e 0 0 d g a 1 0 e d c 0 0 f f b 1 1 g g h 0 1 h g a 1 0 ──────────────────────── 5. (10%) One day, Larry found an interesting problem which looked roughly like this: There are one door and four guys (X, Y, Z, and W). The door has several door locks on it, and each guy has keys to some of the locks. We find that the door can't be opened unless more than two guys bring all their keys. How can this be done? What's the minimum number of door locks and keys re- quired? To formulate this problem and make it clear, all we have to do here is find a function DOOR = f(W, X, Y, Z) which satisfies the following conditions: ⅰ. Each input value is either 0 or 1. ⅱ. DOOR = 1 when more than two inputs are equal to 1, otherwise DOOR = 0. ⅲ. It must be written in the form of product-of-sums. ⅳ. Any usage of negation is prohibited. ⅴ. The number of sum terms is minimal. ⅵ. The number of appearance of variables is minimal. Please write down the truth table of this function, construct the K-map (please focus on all 0s instead of 1s), and derive the simplified product-of- sums expression. 6. (15%) Design a sequential circuit. It has two inputs A and B, and one output Y. When the circuit sees a "101" on input A, Y will output the complement of B for the next 16 cycles; otherwise, Y will be 0. The circuit should ignore what A is receiving during these 16 cycles. Use positive-edge-triggered T flip-flops and a 4-bit binary counter as your building block, and below is an example patterns: Input A: 0011 0010 0110 1001 0010 1010 1110 0111 Input B: 1011 0011 1000 1111 0000 1111 1000 0011 Output Y: 0000 0000 0000 0000 1111 0000 0111 0000 7. (15%) There is an MN flip-flop, which (ⅰ) if MN = 00, this flip-flop's next state is 0, (ⅱ) if MN = 01, this flip-flop won't change its state, (ⅲ) if MN = 10, this flip-flop's next state is the complement of present state, (ⅳ) if MN = 11, this flip-flop's next state is 1. (a) Use present state (Q), next state (Q') and input (M, N) to construct a table. (Notice: use don't-care term as possible as you can.) (b) Use derived table and K-maps to design a counter which consists of three MN flip-flops, and its output sequence is as below: ABC = 000, 010, 001, 100, 110, 000, 010, ... For your reference: Excitation Table \begin{tabular}{cc|cc|cc|c|c} $Q$ & $Q^+$ & $R$ & $S$ & $J$ & $K$ & $T$ & $D$\\ \hline 0 & 0 & X & 0 & 0 & X & 0 & 0\\ 0 & 1 & 0 & 1 & 1 & X & 1 & 1\\ 1 & 0 & 1 & 0 & X & 1 & 1 & 0\\ 1 & 1 & 0 & X & X & 0 & 0 & 1 \end{tabular} Characteristic Equations R-S: $Q^+ = S + \bar RQ$ D: $Q^+ = D$ J-K: $Q^+ = J\bar Q + \bar KQ$ T: $Q^+ = T\bar Q + \bar TQ$ -- 第01话 似乎在课堂上听过的样子 第02话 那真是太令人绝望了 第03话 已经没什麽好期望了 第04话 被当、21都是存在的 第05话 怎麽可能会all pass 第06话 这考卷绝对有问题啊 第07话 你能面对真正的分数吗 第08话 我,真是个笨蛋 第09话 这样成绩,教授绝不会让我过的 第10话 再也不依靠考古题 第11话 最後留下的补考 第12话 我最爱的学分 --



※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 36.230.44.40 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/NTU-Exam/M.1744980230.A.7A9.html ※ 编辑: xavier13540 (36.230.44.40 台湾), 04/18/2025 20:54:43
1F:推 rod24574575 : 收录资讯系! 04/19 01:35







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Soft_Job站内搜寻

TOP