作者ws1008taiwan (JW)
看板NTU-Exam
标题[试题] 100下 施文彬 工程数学下 期末考
时间Sun Aug 26 01:40:31 2012
课程名称︰工程数学下
课程性质︰必修
课程教师︰施文彬
开课学院:工学院
开课系所︰机械工程学系
考试日期(年月日)︰2012/06/18
考试时限(分钟):110 min
是否需发放奖励金:是, 感谢
(如未明确表示,则不予发放)
试题 :
Final Exam, Engineering Mathematics II, Spring 2012
Time: 10:20~23:10 noon, June 18, 2012.
Rule: No calculator and no information sheet is allowed. Points will not be
given without providing details of your calculation. Good luck!
6iz
e cos(z)
1. (20%) Given f(z)=──────────
z
(a) Find u and v so that f(z)=u(x,y)+i(x,y).
(b) Determine all points at which Cauchy-Riemann equations are satisfied, and
determine all points at which the f(z) is differentiable.
(c) Evaluate ∫f(z)dz ; Δ is any closed path enclosing z=-2i. (You may have to
discuss the solution for different paths.)
f(z)
(d) Evaluate ∫────── dz ; Δ is the circle │z+2i│= 4
2
(z+2i)
2. (20%) Consider the boundary value problem
2
c Yxx = Ytt + k for 0<x<L, t>0, and k is a constant;
Y(0,t)=Y(L,t)=0 for t≧0;
Y(x,0)=f(x), Yt(x,0)=g(x) for 0<x<L
(a) Solve the problem using separation of variables. (You may leave expansion
coefficients in integral forms.)
(b) What is the steady-state solution of this problem?
3. (20%) Consider the heat conduction
2
δu δ u
──= k ─── for -∞< x <∞, t>0 with
δt 2 2
δ x
u(x,0)=f(x) for -∞< x <∞.
(a) Determine the steady-state solution.
-x
(b) If f(x)=∕ e for -1≦x≦1
∣ , solve the problem by Fourier transform.
﹨ 0 for │x│>1 (Please carry out all integrals)
4. (20%) Consider the infinite string problem
2
c Yxx = Ytt, (-∞< x <∞, 0< t <∞)
y(x,0)=f(x), Yt(x,0)=g(x). (-∞< x <∞)
(a) Show that thewave equation becomes Yξη=0 by lettingξ=x-ct and η=x+ct.
(b) For g(x)=0, derive the solution Y(x,t)=[f(x-ct)+f(x+ct)]/2.
f(x-ct)+f(x-ct) 1 x+ct
(c) For g(x)≠0, derive the solution Y(x,t)=───────── + ─ ∫ g(s) ds.
2 2c x-ct
2 ,, , 2 2
5. (20%) Consider the differential equation x y +xy +(λx -n )y = 0 on the
interval (0,R). Here n is any given nonnegative integer. Let y(R)=0.
(a) Write the differential equation in Sturm-Liouville form and show that it is
a singular Sturm-Liouville problem with appropriate boundary condition at
x=0.
(b) Determine the eigenvalues and eigenfunctions of this Sturm-Liouville
problem.
(c) Write down the orthogonal condition of the eigenfunctions.
(d) Prove the orthogonal condition.
Some useful equations
-------------------------------------------------------------------------------
2 ,, , 2 2
Bessel's equation x y + xy +(x -v )y=0
A0 ∞ nπx nπx 1 L 1 L nπx
S(x)=─+Σ Ancos(───)+Bnsin(───), A0=─∫f(x)dx, An=─∫f(x)cos(───)dx
2 n=1 L L L-L L-L L
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 1.164.211.243
1F:推 zj4ej04jo6 :今年居然有教复变! 08/27 02:08
2F:→ ws1008taiwan:教了不少唷 08/31 09:56
3F:推 lovehan :施文彬!!! 09/01 17:30
4F:推 laboy10 :伤心酒店 09/13 17:55
5F:→ ws1008taiwan:考完真的会伤心 10/08 16:06