作者cosmosp (cosmosp)
看板NTU-Exam
标题[试题]100下 周青松 微积分甲下 期中考
时间Wed Jul 4 23:45:17 2012
课程名称︰微积分甲下
课程性质︰必修
课程教师︰周青松
开课学院:管理学院、生农学院、理学院
开课系所︰工管系科管组、生工系、生机系、地质系
考试日期(年月日)︰2012/06/18
考试时限(分钟):110分钟
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
I.
A. (10%) Show that ∫ dx/x^p convergent if p > 1 and diverges if 0<p≦1.
B. (10%) Let p be a real number.Show that
Σ 1/k^p converges if p>1 and diverges otherwise.
II.
Let Σak be a series with non-negative terms, and suppose that
(ak)^(1/k) →ρ.Show that
A.(10%)If ρ<1, then Σak converges.
B.(10%)If ρ>1, then Σak diverges.
III.
A.(10%)Expand g(x)=e^(x/2) in powers of x-3.
B.(10%)Prove that
1 1 1
ln x = ln a + — (x-a) - --(x-a)^2 + --(x-a)^3 - ...
a 2a^2 3a^3
for 0<x≦2a.
IV.
A.(10%)Use L'Hospital rule to evaluate the limit
e^x-1-x
lim ------.
x→0 x arctan x
B.(10%)Find a power series representation for the improper integral
x
∫ arctan t/t dt.
0
V.Set f(x)=xe^x
A.(10%)Expand f(x) in a power series.
B.(10%)Integrate the series and show that
∞ 1 1
Σ ----- = --
n=1 n!(n+2) 2
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 118.170.197.249