NTU-Exam 板


LINE

课程名称︰物理化学二 课程性质︰必修 课程教师︰郑原忠 开课学院:理学院 开课系所︰化学系 考试日期(年月日)︰2010/3/27 考试时限(分钟):120 是否需发放奖励金:是 (如未明确表示,则不予发放) 试题 : 1.For a particle with mass m in a one-dimensional box with lenth a, the ground-state wavefunction is φ=(2/a)^1/2sin(pix/a). Consider the particle in the ground state. (a)(5%)Show that φ is normalized. Hint:sin^2(x/2)={1-cos(x)}/2 (b)(5%)What is the probability that the particle is the middle third of the box? (c)(5%)What is the kinetic enerrgy of the particle? 2.(10%)A hermitian operator A satisfies ∫φ*Aψτ = ∫ψ(A φ )* dτ for arbitrary wavefunctions ψ and φ. Show that the momentum operator Px=-ihd/2pidx is hermitian. 3.For a particle in a two-dimensional square box, the total energy eigenfunctions are ψ(x,y)=Nsin(Nxpix/a)sin(Nypiy/a) (a)(5%)What is the pamiltonian of this system? Define additional parameters and also identify the boundary conditions for the eigenstates. (b)(5%)Obtain an expression for eigen-energies E(nxny) in terms of nx, ny, and a. (c)(5%)Contour plots of four eigenfunctions are shown on the right. The x and y directions of the box lie along the horizontal and vertical directions, respectively. Identify the quantum numbers Nx amd Ny for states a-d. (d)(5%)Give the degeneracies of the states a-d. Sort the four states in the order of increasing energy. (a)l-------- (b)l+++--- (c)l++--++ (d)l++-- l---+---- l---+++ l++--++ l++-- l--+++--- l+++--- l++--++ l++-- l---+---- l---+++ l++--++ l--++ l-------- l+++--- l++--++ l--++ l l l l--++ --------- ------- -------- ------- 4. A quantum particle with mass m in a harmonic potential is described by the hamiltonian H=p^2/2m+1mw^2x^2/2. Define the non-hermitian ladder operators: a=(mw2pi/2h)^1/2(x+ip/mw) a*=(mw2pi/2h)^1/2(x-ip/mw) We have showed that H can be re-written in terms of a and a* as H= hw(a*a+1/2)/2pi. On addition, a ψn(x)=n^1/2ψn-1(x) and a*ψn(x)= (n+1)^1/2ψn+1(x), whereψn(x) denotes the eigenfunctions of H with vibrational quantum number n=0,1,2.........Answer the following questions using the porperties of ladder operators: (a)(5%)Evaluate Hψn(x) using ladder operators to find the energy levels En. (b)(5%)The ground state state wavefunction is ψo(x)=(alfa/pi)^1/4* exp(-alfax^2/2) with alfa=mw2pi/h. What is the wavefunction of the first excited state ψ1(x)? Hint:use Px=-ihd/2pidx to evaluate a*ψo(x). (c)(10%)Consider the state ψ that is the equal superposition of ψo and ψ1:ψ=c{ψo(x)+ψ1(x)}.What is the value of the normalization constant c (assuming a real number)? What is the average ebergy and the standard deviation in energy? (d)(10%)Calculate the expectation values <x> ad<x^2> for the state ψ. (e)(5%)Sketch rough graphs of ψo(x), ψ1(x) in the harmonic potential. Label the energy levels. Use the inerference of ways to explain what you found in (d). 5.Answer true or false for the following statements(3 points each): (a)The zero point energy is lower for a He atom in a box than fot an electron. (b)Molecules with a longer pi-conjugated system tend to absorb photons with higher energyies. (c)If g(x) is an eigenfunction of the linear operator A, then cg(x) is also an eigenfunction of A, where c is an arbitrary constant. (d)According to the superposition principle, if g1(x) and g2(x) are both eigenfunctions of the linear operator A< then their linear combinations are also eigenfunctions of A. (e)The wavefunction of a system must satisfy the time-independent Schrodinge equation. (f)If we measure the observable A when the system's wavefunction is not an eigenfunction of A, then we can get an outcome that is not an eigenvalue of A. (g)For the n=25 harmonic oscillatoreigenfunction, the sign of ψ in the right=hand classical forbidden region is opposite the sign in the left- hand classical forbidden region. 6. Bonus questions(5 points each): (a)Explain why a harmonic osccillatorwhose energy expectation value equals to zero must violate the Heisenberg's uncertainty principle. Hint: you can take it for granted that if A is a hermitian operator, then the expectation value of A^2 for any wavefunctions must be greater or equal to zero. i.e.(A^2) >= 0 (b)Electron tunneling occurs in the scanning tunneling mucroscope, which makes possible atomic resolution of surfaces. Explain why? Hint:use the distance dependence of electronic tunneling probabilities. --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.36.107.7







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BuyTogether站内搜寻

TOP