作者jech801127 (cosmos)
看板NTU-Exam
标题[试题] 99下 张秀瑜 微积分乙下 期末考
时间Tue Jun 21 19:22:58 2011
课程名称︰微积分乙下
课程性质︰必修
课程教师︰张秀瑜
开课学院:理学院
开课系所︰经济/管院/地理
考试日期(年月日)︰2011/6/21
考试时限(分钟):110分钟
是否需发放奖励金:请~
(如未明确表示,则不予发放)
试题 :
yx^2
1.(a)∫∫________ dA R=[0,1] ×[0,3] (10%)
R x^3+1
1 2 xe^x
(b)∫∫_______ dydx (10%)
0 1 y
2.(10%)Find the volumn of the solid under the plane x+y-z=0 and above the
triangle with vertices (1,1), (4,1) and (1,2)
3.Sketch the region and evaluate the integral by reversing the order of
integration
1 π/2
(a) ∫ ∫ cosx(1+cosx^2)^1/2 dxdy (10%)
0 arcsiny
1 1
(b) ∫∫cos(y^2)dydx (10%)
0 x
3 (9-x^2)^1/2
4.(10%)Evaluate ∫∫(x^2+y^2)^1/2 dydx by converting to polar cordinates.
-3 0
5.(10%)Find the mass of the solid E={(x,y,z) 0≦x≦1 0≦y≦x x≦z≦2x}
with the density function p(x,y,z)=yzcos(x^5)
6.(10%)Evaluate ∫∫∫ (x^2 + y^2 + z^2)dV , where E: 0 ≦ z ,
E
x^2 + y^2 + z^2 ≦ 1
7.(10%)Find the image of the set S={(u,v) 3≧u≧0, 2≧v≧0} of the
transformation x=2u+3v, y=u-v
y-x
8.(10%)Evaluate ∫∫cos ___ dA, where R is the trapezoidal region with
R y+x
vertices (1,0), (2,0), (0,2), (0,1)
用了一年的板 想说今天来po一下~
试题版首po 如果打得不漂亮的地方敬请见谅
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 122.116.37.43
1F:推 shokanshorin:平平一样都微乙,4949篇...(崩溃) 06/21 19:27
2F:→ jech801127 :(拍拍) 06/21 19:29
3F:推 fish24685 :(拍拍) 06/21 19:38
4F:推 liltwnboiz :我要考这篇 QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 06/21 21:41
5F:→ jech801127 :楼上强者Y 06/21 21:51
6F:推 liltwnboiz :no, I get C 06/21 23:49