作者wheata (仙人指路为马)
看板NTU-Exam
标题[试题] 99上 王金龙 微积分甲上
时间Sat Jun 4 23:48:14 2011
课程名称︰微积分甲上
课程性质︰必修
课程教师︰王金龙
开课学院:理学院
开课系所︰数学系
考试日期(年月日)︰2010/12/30
考试时限(分钟):30
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
∞ (k!)^2˙x^2
A. Determine whether the series Σ ──────
k=1 (2k)!
converges or diverges for all x
ε R
(ε:属於)
B. Let f(x) = x^2 for x
ε [-π,π] and f( x + 2π) = f(x) for all x.
(a) Find the Fourier series of f.
∞ 1 π^2
(b) Use (a) to show that Σ ─── = ──.
k=1 k^2 6
π sin(n+1/2)t
C. (a) Show that ∫ ─────── dt =π for all n
ε N.
0 sin(t/2)
1
(b) Suppose that f is piecewise C on [ a , b ], show that
b
lim ∫ f(t)sinλt dt = 0.
λ→∞ a
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 114.36.96.213