作者FAlin (FA(ハガレン))
看板NTU-Exam
标题[试题] 99下 冯蚁刚 线性代数
时间Thu Jun 2 14:42:05 2011
课程名称︰工程数学-线性代数
课程性质︰电机系必修
课程教师︰冯蚁刚
开课学院:电资学院
开课系所︰电机系
考试日期(年月日)︰2011年6月2日
考试时限(分钟):1:20~2:10 50分钟
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
Linear Algebra Quiz 2
Dept. of Elec. Eng.,National Taiwan University (Prof. Fong's Class)
June 2 , 2011
USE OF ANT AUTOMATIC COMPUTING MACHINES IS PROHIBITED
1. Judge if the following statements are true of false. Give a concise proof
to each true statement, and a counterexample to each false statement.
(a) If A and B are n ×n matrices and v is an eigenvector of both A and B,
then v is an eigenvector of AB. (20%)
n ⊥
(b) For any subspace W of R , dim W = dim W. (20%)
┌ -4 0 2 ┐
2. For the matrix M = │ 2 -2 -8 │find all eigenvalues and a basis for each
└ 2 0 -4 ┘
eigenspace. (25%) Is the matrix M diagonalizable? Why or Why not? (5%)
n
3. (a) Let P_w be the orthogonal projection for W, a subspace of R. Prove that
P_w⊥ = I_n - P_w , where w⊥ is the orthogonal complement of W and I_n
is the n ×n identity matrix. (10%)
(b) Let W = Null B, where B is an m*n matrix of rank m. Prove that
T T -1
P_w = I_n - B (B B ) B.(10%)
( Hint: For an n ×n matrix C with rank m and column space Col C, it is
T -1 T
known P_Col C = C (C C) C . Compare this formula to the one you are
asked to prove and find the relation. )
┌ -1 1 0 -1 ┐
(c) For A = │ 0 1 -2 1 │ and W = Null A, find the matrix P_w.(10%)
│ -3 1 4 -5 │
└ 1 1 -4 3 ┘
( Hint: You can apply the formula of (b), but note that rank A ≠ 4.
You can also find a basis of W and use the Hint for(b).)
--
没有伴随着痛苦的教训是没意义的。
人如果不牺牲一些东西,就无法得到任何东西。
但是当超越了障碍,并且把得到的东西变成属於自己的东西时...
人应该就能够得到无法取代的
钢之心灵吧。
<
Fullmetal
Alchemist>
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.4.186
1F:推 OckhamsRazor:推秒PO 06/02 14:49