NTU-Exam 板


LINE

课程名称︰离散数学 课程性质︰选修 课程教师︰陈健辉 开课学院:电机资讯学院 开课系所︰资工系 考试日期(年月日)︰2011/5/24 考试时限(分钟):2小时 是否需发放奖励金:是 (如未明确表示,则不予发放) 试题 : Examination #2 (范围:Algebra) 1. Prove that if 3|n^2 then 3|n, where n is a positive integer, by the methods of: (a) p→q <=> ┐q→┐p; (5%) (b) contradiction. (5%) 2. The following are some binary relations on A = {1, 2, 3, 4}. R1 = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 3), (4, 2), (4, 3)}. R2 = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 2)}. R3 = {(1, 2), (2, 1), (2, 3), (3, 2), (1, 4), (4, 1)}. R4 = {(1, 1), (2, 2), (2, 3), (4, 4)}. R5 = {(1, 2), (2, 1), (2, 3), (3, 3), (3, 4)}. (a) Which are reflexive? (2%) (b) Which are irreflexive? (2%) (c) Which are symmetric? (2%) (d) Which are antisymmetric? (2%) (e) Which are transitive? (2%) (f) Which are equivalence relations? (2%) (g) For each of (f), find all equivalence classes. (2%) (h) Which are partial orderings? (2%) (i) For each of (h), how many possible topological orders on A are there? (2%) (j) Which are total orderings? (2%) 3. The following is a proof for a.0 = 0 in a Boolean algebra (K,., +), where a belongs to K. _ _ _ a.0 = (a.0) + 0 = (a.0) + (a.a) = a.(0 + a) = a.a = 0. Is it feasible to obtain a proof for a + 1 = 1 from the above by replacing all occurrences of "+", ".", and "0" with ".", "+", and "1", respectively ? That is, _ _ _ a + 1 = (a + 1).1 = (a + 1).(a + a) = a + (1.a) = a + a = 1. Explain your answer. (10%) 4. For the commutative ring R = (Z, ⊕, ⊙), where Z is the set of integers and a⊕b = a + b - 1, a⊙b = a + b - abfor any a, b belong to Z. (a) find the identity for ⊕; (3%) (b) find the inverse of 5 under ⊕; (3%) (c) find the unity for ⊙l (3%) (d) show that R is an integral domain; (5%) (e) show that R is not a field; (5%) (f) show that (Zodd, ⊕, ⊙) is a subring of R; where Zodd is the set of odd integers; (6%) (g) show that (Zodd, ⊕, ⊙) is an ideal; (5%) 5. Let C be the set of complex numbers and S be the set of real matrices of the form [ a b] Define f: C→S be f(a+bi) = [ a b] [-b a]. [-b a]. (a) Prove that f is a ring isomorphism from (C, +,.) to (S, ⊕, x), where + and . (⊕ and x) are ordinaryaddition and multiplication, respectively, on complex numbers (matrices). (5%) (b) How to compute (4+5i).(2-3i) by using x? (5%) 6. Let G = <a> with o(a) = n. Prove that a^k, k belongs to Z+, generate G if and only if gcd(k, n) = 1. (10%) 7. Prove that any group of prime order is cyclic. (10%) 8. (加分题)以下是有关本课程与课堂上发生的,何者为真? (a) 老师的姓名是陈建辉 (2%) (b) 老师习惯站着讲课,但偶尔也会坐在椅子讲课 (2%) (c) 老师习惯带一杯茶进教室,但也曾带罐装饮料进教室 (2%) (d) 老师曾因赶课而延後20分钟下课 (2%) (e) 老师曾因事请助教代课 (2%) (f) 上课曾遇有感地震 (2%) (g) 上课曾遇投影设备故障 (2%) (h) 老师曾提及张爱玲与金庸的小说 (2%) (i) 老师曾提及曾国藩家训 (2%) (j) 老师曾提及妥瑞氏症 (2%) --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.30.142
1F:推 chad0617 :加分题XD 05/24 21:06
2F:推 firepeter :加分题好有趣XD 05/24 23:33
3F:→ andy74139 :已收录至资讯系!! 05/24 23:40







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Tech_Job站内搜寻

TOP