NTU-Exam 板


LINE

课程名称︰离散数学 课程性质︰选修 课程教师︰陈健辉 开课学院:电机资讯学院 开课系所︰资工系 考试日期(年月日)︰2011/4/12 考试时限(分钟):2小时 是否需发放奖励金:是 (如未明确表示,则不予发放) 试题 : Examination #1 (范围:Combinatorics) (For each problem, please provide your computation details, not only your answer.) 1. Solve the following recurrence relations.(10%) a(n+3) - 3a(n+2) + 3a(n+1) - a(n) = 3 + 5n, n>=0. 2. Suppose that n is a nonnegative integer. Find the generating function for the number of ways to partition n into summands such that: (a) each summand must appear an even number of times. (5%) (b) each summand must be even. (5%) 3. Find the number of integer solutions to x1 + x2 + x3 + x4 = 19, where -5 <= xi <= 10 for 1 <= i <= 4.(10%) 4. In how many ways can a sequence of 1's and 2's sum to n, where n >= 0?(10%) 5. How can Mary split up 12 hanbergers and 16 hot dogs among her sons Richard, Peter, Christopher, and James in such a way that James gets at least one hambergers and three hot dogs, and each of his brothers gets at least two hambergers but at most five hot dogs? (10%) 6. Professor Ruth has five graders to correct programs in her courses in Java, C++, SQL, Perl, and VHDL. Graders Jeanne and Charles both dislike SQL. Sandra wants to avoid C++ and VHDL. Paul detests Java and C++, and Todd refuses to work in SQL and Perl. In how many ways can Professor Ruth assign each grader to correct programs in one language, cover all five languages, and keep everyone content? (10%) 7. Why is the coefficient of x^4/4! in (1+x+x^2/2!)^2(1+x)^2 the number of ways to arange four letters from ENGINE? (10%) ╴╴ ╴ 8. Prove N(c1c2...ct) = N - Σ N(ci) + Σ N(cicj) - Σ N(cicjck) + ... 1≦i≦t 1≦i<j≦t 1≦i<j<k≦t + (-1)^t N(c1c2...ct), not by induction. (10%) 9. Explan why a recurrence relation of the form a(n)=a(0)a(n-1)+a(1)a(n-2)+... +a(n-1)a(0) can be used to compute the number of distinct outputs that may be generated from the following stack. You are NOT REQUIRED to solve the relation. (10%) ────────────╮╭──────────────── ││ Output ← ││ ← 1, 2, 3, ... , n Input ──────────╮ ╰╯ ╭─────────────── │↑ ↓│ │ │ │ │ │ │Stack │ │ │ │ ╰────╯ 10. Let a(n) count the number of ways to write n as an ordered sum of odd positive integers, where n >= 1. For example, a(3)=2 (because 3=3=1+1+1) and a(4)=3 (because 4=3+1=1+3=1+1+1+1), Verify a(n) = a(n-1) + a(n-2) for n >= 3. (10%) --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.30.129 ※ 编辑: fei6409 来自: 140.112.30.129 (04/12 20:36)
1F:推 andy74139 :已收录至!! 04/12 22:14
修改一点错字。 ※ 编辑: fei6409 来自: 118.168.235.198 (04/12 22:51)
2F:推 andy74139 :已重新收录!! 04/15 17:24







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:BuyTogether站内搜寻

TOP