作者nk52129 (转念的力量)
看板NTU-Exam
标题[试题] 96上 黄维信 微积分上 期末考
时间Sat Feb 23 10:47:28 2008
课程名称︰微积分上
课程性质︰必修
课程教师︰黄维信
开课学院:工学院
开课系所︰工程科学及海洋工程学系
考试日期(年月日)︰2008.01.15
考试时限(分钟):120分钟
是否需发放奖励金:是
(如未明确表示,则不予发放)
试题 :
1. The curve x^(2/3) + y^(2/3) = a^(2/3) is called an astroid. Sketch the
astroid and show that the curve can be parametrized by x(θ)=a(cosθ)^3 ,
y(θ)=a(sinθ)^3 , 0≦θ≦2π. Find the length of the astroid, the volume
and surface area of the solid generated by revolving the astroid about
the x-axis. (25%)
2. Let P be a polynomial of degree n.(10%)
(a) Can P have an inverse if n is even? Support your answer.
(b) Can P have an inverse if n is odd? If so, give an example. Then give
an example of a polynomial of odd degree that does not have an inverse.
3. Calculate. (35%)
sinx-cosx -1
(a) ∫———————dx (b)∫sec xdx
sinx+cosx+1
x+1
(c) ∫π^x dx (d)∫———————dx
x^3+x^2-6x
(e) ∫cos√xdx (f) d/dx [arctan(coshx)]
(g) d/dx [(sinx)^cosx]. What is the domain?
4. Find a parametric form for the ellipse ( x^2 / a^2 ) + ( y^2 / b^2 ) = 1 ,
and the tangent lines at the intersections with the line y=x. (10%)
5. Sketch the polar curve r=1+cosθ , and find the area , and the coordinates
of the centroid of the region enclosed by the curve. (15%)
1
6. Show that d/dx[arc(sinhx)] = ——————— , x real. (10%)
√(x^2+1)
--
My Weblog...
http://blog.pixnet.net/nk52129
你一定要来参观喔~~^^
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 219.84.132.176