作者wu1212121212 (好小吴\(⊙▽⊙)/ )
看板NTNUm100a
标题[教甄] 99年附中
时间Mon Dec 27 22:55:05 2010
设 a_0 = 1/2 a_n = [(1+a_n-1)/2]^(1/2) n = 1.2.3...
求 lim 4^n(1-a_n)
n->oo
<sol>
设 a_0 = cosx
=> a_1 = cos(x/2) , a_2 = cos(x/4) ...
∴ a_0=cos(π/3) a_n=cos(π/3*2^n)
lim (4^n)(1-a_n) = lim (4^n){2sin[π/3*2^(n+1)]}^2 (1)
n->oo n->oo
= lim 2{sin(π/3*2^(n+1)/[π/3*2^(n+1)]}^2 (π/6)^2 (2)
n->oo
= (π)^2/18
----------------------------------------------------------------------------
XX 你 (1)→(2) 自己凑一下
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 220.136.185.84
1F:→ wu1212121212:就是把4^n想办法凑得跟sin的角度港款 12/27 22:58
2F:推 contentt:有~凑出来了~干温 12/28 16:53