NCTU-STAT99G 板


LINE

交通大学、清华大学 统计学研究所 专题演讲 题 目:Density Estimation with Minimization of U-divergence 主讲人:Prof. Kanta Naito (Department of Mathematics, Shimane University, Japan) 时 间:99年10月8日(星期五)上午10:40-11:30 (上午10:20-10:40茶会於交大统计所429室举行) 地 点:交大综合一馆427室 Abstract Recently, there has been renewed widespread interest in supervised learning in regard to regression, classification and pattern recognition. Boosting has been known as promising techniques with feasible computational algorithms that have received a great deal of attention. In contrast to supervised learning, boosting approaches to unsupervised learning, such as density estimation, appear to be less developed. Although it is understood that unsupervised learning is more difficult than supervised learning, there is a need for an effective learning method for density estimation. The purpose of this study is to develop a general but practical learning method for multivariate density estimation. Especially the proposed method for density estimation is based on the stagewise minimization of the U-divergence. The U-divergence is a general divergence measure involving a convex function U which includes the Kullback-Leibler divergence and the squared norm as special cases. The algorithm to yield the density estimator is closely related to the boosting algorithm and it is shown that the usual kernel density estimator can also be seen as a special case of the proposed estimator. Non-asymptotic error bounds of the proposed estimators are developed and numerical experiments show that the proposed estimators often perform better than a kernel density estimator with a sophisticated bandwidth matrix. The research is a joint work with Shinto Eguchi of The Institute of Statistical Mathematics --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.113.114.213







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:e-shopping站内搜寻

TOP