作者jacky7987 (忆)
看板NCCU08_Math
标题[功课] 如果你没时间看Bernstein
时间Tue Jan 11 01:09:33 2011
帮大家简单整理一下
n r n r n-r
1.B_n(f:x)=sum f(---)( )x (1-x)
r=0 n r
n r n-r
Sometimes we write p (x)=( )x (1-x)
r,n r
2.B_n is a
linear operator from F([0,1]) to F([0,1])
翻译成中文就是把一个定义在[0,1]的函数f 打到 B_n(f)这样
而且他是线性的i.e.
For a in |R
B_n(f+a*g:x)=B_n(f:x)+a*B_(g:x)
3.B_n is a
monotone(positve) operator i.e.
If f(x)≧g(x) in [0,1] => B_n(f:x)≧B_n(g:x) in [0,1]
(保持大小的关系)
In par, f(x)≧0 => B_n(f:x)≧0
4.(1)The Berstein Polynomial only reproduce linear polynomial i.e.
B_n(ax+b:x)=ax+b 就是线性的转出来会长的一样
2 2 1
e.g. B_n(x :x )=x +---x(1-x) 没有出来还是长得一样
n
(2)
B_n(f:0)=f(0)
B_n(f:1)=f(1)
hence Bernstein Polynomial interpolate f at both end of f on [0,1]
5.Defn: The
Forward difference operator △ with step size h is defined by
 ̄ ̄
△f(x_0)=f(x_0+h)-f(x_0)
Under this notation ,the Bernstein Polynomial may be expressed in the form
n n r r
B_n(f:x)=sum ( )△ f(0)x 1
r=0 r with step size h=---
n
反正就是它可以展成差分的模样
6.The relation between difference and derivative is
m
△f(x_0) (m)
--------- = f (c) for some c in (x_0,x_0+mh)
m
h
差分透过补上宽度就可以用均值定理一直简化到某个c在你差分的范围里面
7.Differential form for Bernstein Polynomial
(k) (n+k)! n k r n r n-r
B (f:x)=-------sum △f(-----)( )x (1-x) 1
n+k n! r=0 n+k r with step size h=-----
n+k
反正degree of n+k微分k次就会变成degree of n只是差分距离要用n+k次的而已
8.Suppose f \in C[0,1] ,then for any ε>0 there exists a N\in |N s.t
forall n≧N |f(x)-B_n(f:x)|<ε
请记住f一定要
定义在[0,1]上而且要
连续这个定理才会对
=====
看到一个机掰的定理不在这个范围但是很有趣
Voronovskaya’s theorem
1
lim n(f(x)-B_n(f:x))=---x(1-x)f''(x)
n->∞ 2
=====
祝大家期末考顺利
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 123.193.93.138
※ 编辑: jacky7987 来自: 123.193.93.138 (01/11 01:13)
1F:推 Madroach:推 01/11 01:14
2F:→ jacky7987:希望大家可以认真看看也许只考一两题但是就是10分 01/11 01:17
3F:推 dbtuh611:推 01/11 02:51