作者gogowin (身世悠悠何足问)
看板Inference
标题Re: [问题] 毛毛虫爬绳子的问题
时间Mon Jul 28 19:58:40 2008
不好意思 删光光
题目:有一绳长100m,一端有蜗牛一只以每分钟1m速度向另一端爬行。
惟当蜗牛开始爬行後,每整分时绳子均匀拉长100m,试问蜗牛是
否能走到终点?
试解:
1.由於绳子是均匀拉长,所以蜗牛走过的路程占绳子总长的比例
永远不会减少。
2.第一分钟蜗牛走了1m,占总长的1/100。一分钟整时绳子拉长
为200m,蜗牛走过的路程为1+1m,依然占绳长的1/100。
3.第二分钟蜗牛走了2+1m,占总长的3/200。二分钟整时绳子拉长
为300m,蜗牛走过的路程为2+1+1.5m,依然占绳长的3/200。
4.前n分钟蜗牛走的路线百分比总和为:
1 1 1 1 1 1
----- + ----- + ----- + ----- + ----- + ........ -----
100 200 300 400 500 100n
1
= ----- ( 1 + 1/2 + 1/3 + 1/4 + ...... + 1/n )
100
5.蜗牛走完全程,即上式>100%,即:
1
----- ( 1 + 1/2 + 1/3 + 1/4 + ...... + 1/n ) > 1
100
1 + 1/2 + 1/3 + 1/4 + ..... + 1/n > 100
6.由於1 + 1/2 + 1/3 + 1/4 + ... + 1/n 发散,必存在n使总和
大於100。故,蜗牛可以走到终点。
PS.
将1 + 1/2 + 1/3 + 1/4 + 1/5 +1/6 + 1/7 + 1/8 + ...... + 1/n
与1 + 1/2 + 1/2 + 1/2 + ...... 两无穷数列做比较
由於 1/3 + 1/4 > 1/2
1/5 + 1/6 + 1/7 +1/8 > 1/2
又1 + 1/2 + 1//2 +.....发散
故无穷数列1 + 1/2 + 1/3 + 1/4 + ....... + 1/n 发散
n必存在某数 可使数列总和 > 100
PS2.
1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8..... + 1/n > 100
_________ _____________________
> 1/2 > 1/2
需要200个1/2才会大於等於100
扣掉数列前两项 1 , 1/2 还需要197个
2+4+8+16+............+2的x次方
在x=197时 数列总和+2即为原题蜗牛走到终点的秒数
(近似啦)
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 220.137.133.137
1F:推 ckclark:有更好的逼近Hn=ln n + 0.577左右 07/28 20:11
2F:推 jacka1:推这篇 跟我算的一样 也因为数字太大 所以不会问确切时间 08/02 13:19
3F:→ gogowin:1F....我看不懂....我只有高中一类组数学程度.... 08/02 13:47
4F:推 pAIKAWAq:不可能 若只剩一公尺 还是会拉长到两倍 蜗牛等速 08/04 03:01
5F:→ pAIKAWAq:蜗牛距离终点是等倍成长..=>发散 根本无收敛... 08/04 03:03
6F:→ pAIKAWAq:离终点越来越远 怎麽可能会到达 == ==" 08/04 03:03
7F:推 LeoSW:楼上题目明明说每次加100公尺= = 08/15 00:05