作者elps ( )
看板Grad-ProbAsk
标题Re: [理工] [线代]- rank跟adjoint的问题
时间Wed Sep 9 15:08:59 2009
※ 引述《mailmovieb ( )》之铭言:
: 我想问说如果要证明
: A是n阶方阵,n>1
: 1.rank(A)=n if and only if rank(adj(A))=n
: 2.rank(A)=n-1 if and only if rank(adj(A))=1
: 3.rank(A)<n-1 if and only if adj(A)=0
: 请问该如何证明?
pf:
1. A:nonsingular <=> det(A) != 0
<=> det(adj(A)) = det(A)^(n-1) !=0
<=> adj(A): nonsingular <=> rank(adj(A)) = n
3. Suppose Aij is the cofactor of A, for any i,j,
since Aij is the determinant of a n-1 * n-1 submatrix S, then
rank(A) < n-1 <=> S is singular, for all S
<=> det(S) = 0, for all S
<=> all entries of adj(A) are equal to zero
<=> adj(A) = 0 <=> rank(adj(A)) = 0
2.
(=>)
Since det(A) = 0 => A(adj(A)) = 0
=> R(adj(A)) is contained in N(A)
=> rank(adj(A)) ≦ nullity(A) = n - rank(A) = 1
since rank(A)=n-1, applying 3 we can get rank(adj(A)) != 0,
therefore rank(adj(A)) = 1
(<=)
we can know that rank(A) ≧ n-1 but is not equal to n (by 1 and 3),
rank(A) can only be n-1.
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 140.112.28.201
1F:推 mailmovieb:谢谢你!! 09/09 16:04