作者yesa315 (XD)
看板Grad-ProbAsk
标题Re: [理工] [线代]-求反矩阵
时间Sat Aug 29 17:49:01 2009
※ 引述《chenbojyh (阿志)》之铭言:
: ※ 引述《yesa315 (XD)》之铭言:
: : Define E(a)=I-a*e3*e2^t 属於R n*n ,if a不等於0 ,E(a)的反矩阵是?
: : 答案是E(-a)
: : 能告诉我为什麽吗??
: : (此题是[93清大资应])
: : 谢谢
後来我有想到 以3*3矩阵来讲较好讲
e3=[0 0 1]^t e2=[0 1 0]^t (题目没多说 自己猜的)
则e3*e2^t=[0 0 0] I-a*e3*e2^t=[1 0 0]
|0 0 0| |0 1 0|
[0 1 0] [0 -a*1 1]
(-a)
就是矩阵 R 单位矩阵I把第2列*(-a)加到第3列
23
-1
(-a) (a)
所以他的反矩阵 R = R 也就是E(-a)= I+a*e3*e2^t
23 23
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 218.173.166.135
※ 编辑: yesa315 来自: 218.173.166.135 (08/29 17:50)