作者jessie1921 (幸福呢 死了。)
看板Grad-ProbAsk
标题Re: [商管] [经济]-中兴95-财金所
时间Tue Aug 18 10:12:42 2009
※ 引述《chris1 (小刀)》之铭言:
: Suppose that each individual has the utility function U1(I)=I when there is
: no accident, but when there is an accident, an individual will feel that
: his life is hopeless and his utility function becomes U0(I)=0, for any
: I>=0 (so money is of no use to an individual having an accident). An
: insurance company offers a contract: if a person pays the company QZ dollars
: before he knows whether he has an accident, the person will receive Z dollars
: from the company when he does not have an accident (so I=20+Z-QZ), but
: receives 0 from the company if he has an accident (so I=15-QZ). Suppose
: that each insurance company gets 0 expected profit. Suppose that each
: individual can have negative income even after an accident, what will be
: an individual's choice of Z?
: 解答是写
: Max EU=P*U0(15-QZ)+(1-P)U1(20+Z-QZ)=P*0+(1-P)(20+Z-QZ)
: F.O.C : (1-P)(1-Q)=0 ∴Z=0
: 我不懂如果真的要极大化效用,Z=0怎麽会是最大的,应该是最小的吧,在这样的
: 式子下,Z越大应该效用就越大呀,因为P、Q都介於0、1之间呀,请高手指教..
我觉得是要考虑要不要投保的问题
如果不投保此人的效用为: (1-P)*I+P*0=(1-P)I
如果投保由F.O.C可知: P=1 (Q为投保的费率 保险公司不可能设为1)
所以这时的效用为: 0
因为投保的效用小於不投保的效用 0<(1-P)I
所以此人选择不投保 Z为投保的保额为0
--
我没有你想像那麽坚强 我只是去假装没事
而你却不知道 只有在去努力的爱着你时 我才是最勇敢的
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 220.133.97.34