作者ILzi ( 并不好笑 )
看板Grad-ProbAsk
标题Re: [理工] 线代-是非题
时间Sun Mar 29 02:16:19 2009
※ 引述《thank1984 (thankakimo)》之铭言:
: 是非题:
: a) Every vector space that is spanned by a finite set has a basis
: True
: b) Every subspace of a finite-dimensional space is finite-dimensional
: False
设V为finite-dimensional space S为其subspace
=> S包含於V => 0≦dim(S)≦dim(V)
=> S is finite-dimensional
所以本题为true
: c) The only entries of an elementary matrix are zeros and ones
: True
(3)
R 为elementary matrix,但其元素不全为0或1
12
补充:an elementary matrix有3种
(k) (k)
(1)R (2)R (3)R 其中k€F
ij i ij
本题为False
: d) The sum of two n*n elementary matrices is an elementray matrix.
: False
: e) Every finite-dimensional inner product space posseses an
: orthornormal basis.
: False
Every finite-dimensional inner product space的basis
皆可利用Gram-Schmidt orthogonal process得到一组orthornormal basis
本题为true
: 以上是非题答案小弟都不太确定 所以请大大们帮小弟检查一下是否有写错
: 麻烦各位大大了 感谢
有错麻烦各位帮忙订正
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 125.233.23.162