作者ILzi ( 并不好笑 )
看板Grad-ProbAsk
标题[理工] 线代1题
时间Thu Mar 19 15:16:21 2009
改成原题目如下:
n
Let V be a subspace of R ,Alinear transformation T :V→V is said to be
symmetric if (Tu,v)=(u,Tv) for all u,v€V.
Here (x.y) is the dot product of vectors x and y.
n
A subspace W of R is said to be invariant under T if Tw€W ,for all w€W.
(a)Show that T is symmetric if and only if the matrix representation of T
relative to some orthonormal basis is symmetric.
┴
(b)Show that if W is invariant under T, then the orthogonal complement W
of W is also invariant under T.
我想请问的是第二题的部份
再度麻烦大家了
谢谢
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 210.59.30.152
※ 编辑: ILzi 来自: 210.59.30.152 (03/20 12:06)