作者QUINY (是的,关於思念...)
看板Grad-ProbAsk
标题Re: [问题] 台科大工管统计
时间Wed Mar 18 22:49:06 2009
※ 引述《chspfang (小汪)》之铭言:
: Prove that the inequality
: P(X≧1,Y≧1)≦min( E(X) , E(Y) )
: holds for any two non-negative continuous random variables X and Y with
: joint density f(x,y),where X is not necessarily independent of Y and min(a,b)
: equals the smaller value between a and b.
: 答案
: 由马可夫不等式知 P(X≧1)≦E(X) 且 P(Y≧1)≦E(Y)
: P(X≧1,Y≧1)≦P(X≧1,Y≧1)+P(X≧1,Y< 1)=P(X≧1)≦E(X)
: P(X≧1,Y≧1)≦P(X≧1,Y≧1)+P(X <1,Y≧1)=P(Y≧1)≦E(Y)
: => P(X≧1,Y≧1)≦min( E(X),E(Y) )
: 答案大概是这样
: 可是解答我看不太懂
: 有强者能出来解释一下吗
P(X≧1,Y≧1)+P(X≧1,Y< 1)=P(X≧1)
P(X≧1,Y≧1)+P(X <1,Y≧1)=P(Y≧1) 这个应该没问题
P(X≧1,Y≧1)≦P(X≧1)≦E(X)且P(X≧1,Y≧1)≦P(Y≧1)≦E(Y)
所以P(X≧1,Y≧1)小於E(X),E(Y)中的最小值
=> P(X≧1,Y≧1)≦min( E(X),E(Y) )
--
※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 125.225.6.140
1F:推 JIVOANP:邱啥小定叮当 10/24 17:02