作者goldeneyes (OD)
看板GMAT
标题[心得] GMAT的Problem Solving题型考些什麽?
时间Thu Aug 15 18:33:44 2024
准备要考新制GMAT的同学们,除了新题型Data Insights,也别忘了另外的
Problem Solving题型,这次由教授GMAT数学多年经验的Candice老师来跟大
家针对Problem Solving题型做讲解
Candice老师的专业学经历
https://candiceclass.com/portfolio-items/candice
一、新制GMAT的Problem Solving题型主要是考些什麽?
新制GMAT的
Problem Solving题型共21题,时间45分钟,分数区间60~90分
且Problem Solving题型相对来说较易懂简单,所以大家反而应更重视尽量把
握住,避免任何失分的可能。
想了解更多GMAT新制可以看这篇文章
https://candiceclass.com/gmat-focus-edition-prep/
二、GMAT Problem Solving题型介绍与实际题目解题:
Division and remainder题型:
Club X has more than 10 but fewer than 40 members. Sometimes the
members sit at tables with 3 members at one table and 4 members at
each of the other tables. and sometimes they sit at tables with 3
members at one table and 5 members at each of the other tables.
If they sit at tables with 6 members at each table except one and
fewer than 6 members at that one table, how many members will be
at the table that has fewer than 6 members?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5
我们先设总人数共X个人,题目一开始说总人数大於10小於40
所以我们可得10<X<40
然後说如果4个人坐一桌,会有一桌是坐3个人
即X=4a+3
且如果5个人坐一桌,会有一桌是坐3个人
即X=5b+3
问说如果改为6个人坐一桌,会剩下几个人坐不满一桌?
X=6c+?
这便是最小公倍数的余数题型
所以X=k*LCM(4,5)+3
X=20k+3
又题目一开始说10<X<40,所以k只能代1进去能符合条件,所以可得总人数为
23人
所以23/6=3余5,即可得知,
若6人一桌会有一桌是坐5个人
所以答案选(E)
===================
Probability题型
If the probability that John will buy a certain product is 3/5,
that Bill will buy that product is 2/3, and that Sue will buy that
product is 1/4, and if their decisions to buy are independent,
what is the probability that at least one of them will the
product?
这题问说三个人各有不同机率买某项产品,且三个人买产品的机率是互相独
立的事件,问说「至少」有一位买产品的机率是多少?
重点在事件「独立」,便不须考虑相互的影响
「至少有一位买的机率」=「全部机率减掉一个人都没买的机率」
即1-(1-3/5)*(1-2/3)*(1-1/4) = 1-(2/5)*(1/3)*(3/4) = 9/10
===================
A jar contains 5 white marbles, 3 red marbles, and 2 green
marbles, if six marbles are to be taken from the jar once, then
what is the probability that 3 marbles are white, 2 marbles are
red and 1 marble is green?
(A) 1/5
(B) 2/5
(C) 1/7
(D) 2/7
在一个罐子中共有5个白色marbles,3个红色marbles,2个绿色marbles
问说「一次取出」3个白色,2个红色,一个绿色的机率为多少?
这是基础的排列组合题型,先算出10个取6个总共有多少组合为分母,
再
算取出不同个数的颜色有多少种组合,此为分子
可得机率为
2/7,答案选(D)
===================
Percentage Sample题型
In a corporation, 50 percent of the male employees and 40 percent
of the female employees are at least 35 years old. If 42 percent
of all the employees are at least 35 years old, what fraction of
the employees in the corporation are female?
(A) 3/5
(B) 2/3
(C) 3/4
(D) 4/5
(E) 5/6
这题便是Percentage Sample题型,还记得Sample怎麽找吗?在of的後面动词
的前面便是Sample,有些学生看到这题目会画九宫格,但
这里我不建议画九
宫格,因为并没有太大的帮助,有时你忙老半天画了九宫格然後把位置都放
进去,但却发现怎麽一个地方都没用到。这题是用sample的概念来做。
根据题目的描述,找到Sample後,我们可以得出
50%M + 40%F = 42%(M+F)
题目问公司的员工中,女生占多少比例?
即 ?x(F+M) = F
?=F/M+F
50%M + 40%F = 42%(M+F)
从开始做移项计算
8%M = 2%F
8M = 2F
M:F = 2:8 = 1:4
将M=1, F=4此比例代回
? = F/M+F
可得?=
4/5
===================
For each student in a certain class, a teacher adjusted the
student’s test score using the formula y=0.8x+20, where x is the
student’s original test score and y is the student’s adjusted
test score. If the standard deviation of the original test scores
of the students in the class was 20, what was the standard
deviation of adjusted test scores of the students in the class?
(A) 12
(B) 16
(C) 28
(D) 36
(E) 40
这题情境也是很有趣,我相信大家在念书的时候,应该都有遇到这样的经验
,
可能老师考卷出的太难,然後全班都考砸了考得超级烂的,然後老师为了不
让家长和学生太伤心就做调分,每个人根据原始分数和调分的公式来计算最
後得到的分数。
所以题目说调分的公式为y=0.8x+20,原本调分前学生成绩的standard
deviation是20,问调分後班上学生成绩的standard deviation会变为多少
这里要有一个重要观念,统计中standard deviation所代表的意义为「一组
数值的离散程度」,所以当每个数字都被固定加上某值时,只是平均值会变
大,但整体离散程度不会变
但若是
原始Sample每个数值乘上或除以某值,则standard deviation会因为
乘上的数字做等比例变化
有了这观念後,再回来看这题,调分後分数为y=0.8x+20
看到加20为每人分数固定加20,所以这部分不影响standard deviation
而每人分数乘上0.8,所以调分後的整体standard deviation也会被乘上0.8
即20*0.8 =
16
答案选(B)
Normal distribution题型
A certain characteristic in a large population has a distribution
that is symmetric about the mean m. If 68 percent of the
distribution lies within one standard deviation d of the mean,
what percent of the distribution is less than m+d?
(A) 16%
(B) 32%
(C) 48%
(D) 84%
(E) 92%
因为题目有说,
这个distribution是对称的,所以我们可以判断这是Normal
distribution
接下来你必须要有Normal distribution的观念,先画出如下图,Normal
distribution的平均值正负两个standard deviation为68%
题目问数值小於m+d的机率为多少,因为Normal distribution对称的,你可
得出m左边为50%,而m~m+d的机率为68%/2=%34
所以可得数值小於m+d的机率为50%+34%=
84%
答案选(D)
三、 专业GMAT家教对如何有效率准备Problem Solving的建议与方向
Problem Solving虽然都是数字计算,但同学有没有发现,我们上面好几题都
是可以透过带值进去或利用观念直接解题,而不用做了许多繁杂的计算後才
求出解答,所以Problem Solving题型要解得快又正确的话,其实
对於数学的
整体观念和题型的熟悉度有很强的要求,如果你经过正确的训练後,便可以
依靠观念或技巧性地解法,来轻松得出正确答案。
--
※ 发信站: 批踢踢实业坊(ptt.cc), 来自: 61.61.84.190 (台湾)
※ 文章网址: https://webptt.com/cn.aspx?n=bbs/GMAT/M.1723718029.A.B13.html