作者shmm (shmm的昵称)
看板ESOE-91
标题[微积分日记] CH11
时间Fri Apr 11 22:53:42 2003
宝哥要我po 系花要我po
所以先po一点 希望能抛砖引玉啦
先来我所知道的 ch11
Chapter 11 Infinite Series
p.644 Theorem 11.1.6
∞
if Σ ak converges, then ak -> 0 as k -> ∞
k=0
! converges, diverges与起始点无关
! 证明"iff"时要顺证也要反证
p.648 # 判别 converges, diverges
* <1> ak -> 0 as k -> ∞
*** <2> Integral Test
** (a) Basic Comparison
*** (b) Limit Comparison
<3> *** (a) Root Test (次方) ┐
├ 与 1 有关
*** (b) Ratio Test (阶乘) ┘
! Σf(k) 可用 ∫f(k) dk 来比
p.652 ! e^k >> k >> lnk
p.653 **** Theorem 11.2.6 The Limit Comparison Test
孔:"一定要很熟练"
[30sec] Theorem 11.2.6 的 proof
p.657 Theorem 11.3.1 The Root Test
# The Root Test
(ak)^(1/k) -> ρ
ρ<1, converges
ρ>1, diverges
ρ=1, use "Limit Comparison"
p.658 Theorem 11.3.2 The Ratio Test
# The Ratio Test
a(k+1)
——— -> r
ak
r>1, diverges
r<1, converges
r=1 use "Limit Comparison"
! 想成等比级数来理解
[10sec] EX3
p.662 Definition 11.4.3 Conditional Convergence
! 不可经过加减乘除
p.663 Theorem 11.4.4 Alternating Series Test
# Alternating Series Test
(a) 後项 < 前项
(b) ak -> 0
[30sec] Theorem 11.4.4 的 proof
p.665 [10sec] EX5
p.668 # Taylor Polynomials
用一高次多项式,来尽量表示一函式
(k)
∞ f (0)
Pn(x) = Σ ———— x^k
k=0 k!
孔:"非常重要呀 写下来"
p.671 Theorem 11.5.1 Taylor's Theorem
! Rn+1(x) 可视为误差
p.674 ! 问 Taylor Series 可以不必知道 remainder
p.680 # 有3种方法
1. Po(x) = g(a)
2. Integeration by part
3. 移轴法 [30sec] 孔:"最简单 但是观念要清楚"
p.683 (11.6.5) 孔:"ln0 = ∞ 不可以呀"
p.684 ! Power Series 是在求得 radiu convegagentive
p.686 Figure 11.7.1
! 端点收敛不确定
p.689 [20sec] EX6
p.694 [10sec] EX2
p.695 [10sec] EX3
p.704 [10sec] Supplement To Section 11.8
PS. 阿海後面因为那一堂之前2天没睡 所以该堂啄龟
故都只有记到秒数 希望有记的人回po吧
-=给别人方便就是给自己方便=-
--
※ 发信站: 批踢踢实业坊(ptt.csie.ntu.edu.tw)
◆ From: 140.112.240.76
1F:→ Rayblade:推上色... 推 61.217.56.73 04/11
2F:→ strikeout:真是太伟大了... 推 210.85.187.47 04/11