Cognitive 板


LINE

Liver, Not Brain, May Be Origin of Alzheimer’s Plaques ScienceDaily (Mar. 3, 2011) — Unexpected results from a Scripps Research Institute and ModGene, LLC study could completely alter scientists' ideas about Alzheimer's disease -- pointing to the liver instead of the brain as the source of the "amyloid" that deposits as brain plaques associated with this devastating condition. The findings could offer a relatively simple approach for Alzheimer's prevention and treatment. The study was published online March 3 in The Journal of Neuroscience Research. In the study, the scientists used a mouse model for Alzheimer's disease to identify genes that influence the amount of amyloid that accumulates in the brain. They found three genes that protected mice from brain amyloid accumulation and deposition. For each gene, lower expression in the liver protected the mouse brain. One of the genes encodes presenilin -- a cell membrane protein believed to contribute to the development of human Alzheimer's. "This unexpected finding holds promise for the development of new therapies to fight Alzheimer's," said Scripps Research Professor Greg Sutcliffe, who led the study. "This could greatly simplify the challenge of developing therapies and prevention." An estimated 5.1 million Americans have Alzheimer's disease, including nearly half of people age 85 and older. By 2050, the number of people age 65 and over with this disease will range from 11 million to 16 million unless science finds a way to prevent or effectively treat it. In addition to the human misery caused by the disease, there is the unfathomable cost. A new report from the Alzheimer's Association shows that in the absence of disease-modifying treatments, the cumulative costs of care for people with Alzheimer's from 2010 to 2050 will exceed $20 trillion. A Genetic Search-and-Find Mission In trying to help solve the Alzheimer's puzzle, in the past few years Sutcliffe and his collaborators have focused their research on naturally occurring, inherited differences in neurological disease susceptibility among different mouse strains, creating extensive databases cataloging gene activity in different tissues, as measured by mRNA accumulation. These data offer up maps of trait expression that can be superimposed on maps of disease modifier genes. As is the case with nearly all scientific discovery, Sutcliffe's research builds on previous findings. Several years ago, researchers at Case Western Reserve mapped three genes that modify the accumulation of pathological beta amyloid in the brains of a transgenic mouse model of Alzheimer's disease to large chromosomal regions, each containing hundreds of genes. The Case Western scientists used crosses between the B6 and D2 strains of mice, studying more than 500 progeny. Using the results from this study, Sutcliffe turned his databases of gene expression to the mouse model of Alzheimer's, looking for differences in gene expression that correlated with differences in disease susceptibility between the B6 and D2 strains. This intensive work involved writing computer programs that identified each genetic difference that distinguished the B6 and D2 genomes, then running mathematical correlation analysis (known as regression analysis) of each difference. Correlations were made between the genotype differences (B6 or D2) and the amount of mRNA product made from each of the more than 25,000 genes in a particular tissue in the 40 recombinant inbred mouse strains. These correlations were repeated 10 times to cover 10 tissues, the liver being one of them. "A key aspect of this work was learning how to ask questions of massive data sets to glean information about the identities of heritable modifier genes," Sutcliffe said. "This was novel and, in a sense, groundbreaking work: we were inventing a new way to identify modifier genes, putting all of these steps together and automating the process. We realized we could learn about how a transgene's pathogenic effect was being modified without studying the transgenic mice ourselves." Looking for a Few Good Candidates Sutcliffe's gene hunt offered up good matches, candidates, for each of the three disease modifier genes discovered by the Case Western scientists, and one of these candidates -- the mouse gene corresponding to a gene known to predispose humans carrying particular variations of it to develop early-onset Alzheimer's disease -- was of special interest to his team. "The product of that gene, called Presenilin2, is part of an enzyme complex involved in the generation of pathogenic beta amyloid," Sutcliffe explained. "Unexpectedly, heritable expression of Presenilin2 was found in the liver but not in the brain. Higher expression of Presenilin2 in the liver correlated with greater accumulation of beta amyloid in the brain and development of Alzheimer's-like pathology." This finding suggested that significant concentrations of beta amyloid might originate in the liver, circulate in the blood, and enter the brain. If true, blocking production of beta amyloid in the liver should protect the brain. To test this hypothesis, Sutcliffe's team set up an in vivo experiment using wild-type mice since they would most closely replicate the natural beta amyloid-producing environment. "We reasoned that if brain amyloid was being born in the liver and transported to the brain by the blood, then that should be the case in all mice," Sutcliffe said, "and one would predict in humans, too." The mice were administered imatinib (trade name Gleevec, an FDA-approved cancer drug), a relatively new drug currently approved for treatment of chronic myelogenous leukemia and gastrointestinal tumors. The drug potently reduces the production of beta amyloid in neuroblastoma cells transfected by amyloid precursor protein (APP) and also in cell-free extracts prepared from the transfected cells. Importantly, Gleevec has poor penetration of the blood-brain barrier in both mice and humans. "This characteristic of the drug is precisely why we chose to use it," Sutcliffe explained. "Because it doesn't penetrate the blood-brain barrier, we were able to focus on the production of amyloid outside of the brain and how that production might contribute to amyloid that accumulates in the brain, where it is associated with disease." The mice were injected with Gleevec twice a day for seven days; then plasma and brain tissue were collected, and the amount of beta amyloid in the blood and brain was measured. The findings: the drug dramatically reduced beta amyloid not only in the blood, but also in the brain where the drug cannot penetrate. Thus, an appreciable portion of brain amyloid must originate outside of the brain, and imatinib represents a candidate for preventing and treating Alzheimer's. As for the future of this research, Sutcliffe says he hopes to find a partner and investors to move the work into clinical trials and new drug development. In addition to Sutcliffe, the authors of the study, titled "Peripheral reduction of β-amyloid is sufficient to reduce brain Aβ: implications for Alzheimer's disease," include Peter Hedlund and Elizabeth Thomas of Scripps Research, and Floyd Bloom and Brian Hilbush of ModGene, LLC, which funded the project. -- 原文网址: http://www.sciencedaily.com/releases/2011/03/110303134435.htm 论文: http://dx.doi.org/10.1002/jnr.2260 大意是这篇发表在Journal of Neuroscience的文章指出 也许阿兹海默的病源并非是在脑而是在肝。 研究人员发现有三种基因可以防止淀粉蛋白堆积在脑部, 三个基因若在肝脏的表现比较低的话就可以防止淀粉蛋白堆积在脑部。 其中一个合成presenilin,是一个认为和阿兹海默有关的细胞膜蛋白。 这项发现或许会改变如何预防以及治疗阿兹海默症。 --



※ 发信站: 批踢踢实业坊(ptt.cc)
◆ From: 118.168.235.6
1F:→ shoxx:好酷! 感谢研究员们 03/05 22:53
2F:→ lengon:是发在Journal of neuroscience reserch 03/22 09:52
3F:→ mulkcs:对耶 XD 03/22 10:56







like.gif 您可能会有兴趣的文章
icon.png[问题/行为] 猫晚上进房间会不会有憋尿问题
icon.pngRe: [闲聊] 选了错误的女孩成为魔法少女 XDDDDDDDDDD
icon.png[正妹] 瑞典 一张
icon.png[心得] EMS高领长版毛衣.墨小楼MC1002
icon.png[分享] 丹龙隔热纸GE55+33+22
icon.png[问题] 清洗洗衣机
icon.png[寻物] 窗台下的空间
icon.png[闲聊] 双极の女神1 木魔爵
icon.png[售车] 新竹 1997 march 1297cc 白色 四门
icon.png[讨论] 能从照片感受到摄影者心情吗
icon.png[狂贺] 贺贺贺贺 贺!岛村卯月!总选举NO.1
icon.png[难过] 羡慕白皮肤的女生
icon.png阅读文章
icon.png[黑特]
icon.png[问题] SBK S1安装於安全帽位置
icon.png[分享] 旧woo100绝版开箱!!
icon.pngRe: [无言] 关於小包卫生纸
icon.png[开箱] E5-2683V3 RX480Strix 快睿C1 简单测试
icon.png[心得] 苍の海贼龙 地狱 执行者16PT
icon.png[售车] 1999年Virage iO 1.8EXi
icon.png[心得] 挑战33 LV10 狮子座pt solo
icon.png[闲聊] 手把手教你不被桶之新手主购教学
icon.png[分享] Civic Type R 量产版官方照无预警流出
icon.png[售车] Golf 4 2.0 银色 自排
icon.png[出售] Graco提篮汽座(有底座)2000元诚可议
icon.png[问题] 请问补牙材质掉了还能再补吗?(台中半年内
icon.png[问题] 44th 单曲 生写竟然都给重复的啊啊!
icon.png[心得] 华南红卡/icash 核卡
icon.png[问题] 拔牙矫正这样正常吗
icon.png[赠送] 老莫高业 初业 102年版
icon.png[情报] 三大行动支付 本季掀战火
icon.png[宝宝] 博客来Amos水蜡笔5/1特价五折
icon.pngRe: [心得] 新鲜人一些面试分享
icon.png[心得] 苍の海贼龙 地狱 麒麟25PT
icon.pngRe: [闲聊] (君の名は。雷慎入) 君名二创漫画翻译
icon.pngRe: [闲聊] OGN中场影片:失踪人口局 (英文字幕)
icon.png[问题] 台湾大哥大4G讯号差
icon.png[出售] [全国]全新千寻侘草LED灯, 水草

请输入看板名称,例如:Tech_Job站内搜寻

TOP